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History of the artificial neural networks

e Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
e Synaptic connection strenghts increase for usage, 40’s (Hebb)

* Perceptron learning rule, 50’s (Rosenblatt);

e ADALINE, 60’s (Widrow)

e Critical review ,70’s (Minsky)

* Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..)
* Back propagation learning, 80’s (Sejnowsky, Grossberg)

* Hopfield net, 80’s (Hopfield, Grossberg);

e Self organizing feature map, 70’s - 80’s (Kohonen)

 CNN, 80’s-90’s (Roska, Chua)

 PCA networks, 90’s (Oja)

* Applicationsin IT, 90’s - 00’s

 SVMs, statistical machines 2000-2010’s

* Deep learning, Convolutional Neural Networks 2010-
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The artificial neuron (McCulloch-Pitts)

R
\
* The artificial neuron is an information processing unit that is
basic constructing element of an artificial neural network.
e Extracted from the biological model
Bia
Dendrite Nodes
., | of . Axon no— @ et
' Soma Ranvier terminal function
II"'-., ﬂ : [np @ Output
\ e YT
Schwann | junction
Nucleus Myelin sheath cell S_
Jeig]l:ls McCulloch-Pitts model
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The artificial neuron

Receives input through its synapsis (x;)

é JIK

Synapsis are weighted (w))
* ifw,>0: amplified input from that source (excitatory input)
* ifw,<0: attenuated input from that source (inhibitory input)

A b value biases the sum Bias
to enable asymmetric behavior ‘ o @ I

Activation
[unction

A weighted sum is calculated

Outpul

Activation function shapesthe | =9 @

output signal sipnals ‘ o(-) —

X; : input vector

w,; : weight coefficient vector of neuron k | @

b, : bias value of neuron k | ,
Synaptic

0, : output value of neuron k weights
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The artificial neuron

Output equation:

Y = ¢(2Wkixi + bk]
i1

Bias can be included as:

W,=b

X,=1
m
Ye =9 Zwki X
i=0
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Input
s1onals

= (W' X)

@;\?

X; : input vector (i: 1....m)
W,; : weight coefficient vector of neuron k
b, : bias value of neuron k
0, : output value of neuron k
Bias

Activation
function

o(+) Output

junction

Synaptic
weights 6



Activation functions (1) =2

» Activation or threshold function: ¢(.)

* (.): monotonic differentiable (not necessarily continiously
differentiable) increasing function,

e Typically sigmoidal function is used as activation function

(bipolar) 5
° h m
WIS U= WX =W'X
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Note: the original sigmoid
function is unipolar.




Activation functions (2) -
{’Wﬁ

* Bipolar sigmoidal type nonlinearities :
Soft nonlinearity Hard nonlinearity
. 2 A —>» oD . 1 if u=0
f(u)y=————1 —— T(Lljzsgrl{ll): o
l+e¢ " ' —1 if u<O
i RS P— | |
0.8 - 'E" % 'y
0EL L = sgn(u)
047 L A=1000
o2 ; 1N 2=100 :
° ] PN A=2 .
0.2+ ; : —E Sl }_1 1u
0.4 r L - __. . --\.— -
o6t . -
: S i— ——— ——(——— iy
- = 2 1 ] 1 = = A 5




Activation function (3)

BRI
* Hard nonlinearity type activation function is often used for W
simplification
* [t cannot be differentiated everywhere!

* In this case the output
1, ifu=0

y:sgn(u):{ , 15 ———————

—1, else L

e where 0-5

0 —

m
T 0.5 - _
U=> WX =w'x .| | _
< |

-1.5
>

1 1 1 1 1 1
-1.5 -1 -5 ] LRS! 1

9/26/2018. P-ITEEA-0011 Fall 2018 Lecturel 9



Activation function (4)
» Soft sigmoidal nonlinearity if approximated with piece-wise ’Wﬂ
linear activation function

* |t cannot be differentiated continuously!

== piecewise linear
— sigmoidal
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Elementary set separation by a single neuron (1) ,{\ﬁ?

* Let be the ¢(.) hard nonlinear function, hence the output is
discrete -1 or 1 with this assumption:

+1, iIfu=0
(p(u)zsgn(u)z{ —1, else

* Use the formula substituting u to w'x and then the output +1,
if the weighted sum of the input is greater than zero or -1 if
the argument is smaller than zero.

+1, ifw'x>0
—o(u)=san(w'x) = ’ ~ DECISION!
y=p(u)=s0 ( ) { —1, else
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Elementary set separation by a single neuron (2) e

* Two outputs

* The decision boundary is a hyperplane

defined:

9/26/2018.

Neuron with m inputs has an m dimensional input space

w'x=0
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Neuron makes a linear decision for a 2 class problem




Elementary set separation by a single neuron (3)

L Vﬂ

* ina2-Dinput space,
the hyper planeis a decision
straight line. " region for C1

e Above the lineis decision —

© .:“
classified: +1 (C1: yes) bPoundary e C;
> '. .":I "
O o @ Xq
* Below the lineis Cz A J

classified : -1 (C2: no). ~ decision
region for C2 WX + WX, + W = O
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Why it is so important to use set separation by

(’i\(jﬁ
hyper plane? (1) |
* Most logic functions has this complexity :I:H"' + + * ++
(OR, AND) H+-|+++ -
« There are plenty of mathematical and e s
computational task which can be derived — |
to a set separation problem by a linear ‘DG rator
hyper plane ++s Virginica
.‘:%:‘
e Application of multiple hyper plane . i .
provides complex decision boundary T3 )
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Implementation of a single logical function by a single

neuron (1) \J

& oy o i -

S 15 o i

—1 | +1 —1 _lﬂ ” _ T

1 —1 —1 °

1| +1 | +1 ; ;

* The truth table of the « 2-D AND input space and
logical AND function. decision boundary
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Implementation of a single logical function by a ==

) o |

single neuron (2) www. itk ppke.hu
 We need to figure out the separation surface!
 Mathematically is the following equation:

—15 +x + X, =0 _
1.5 g +1
w,=-1.5; w=1, w,=1, o s
—1
. .
* The weight vector is: .
w=(-1.5,1, 1).
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Implementation of a single logical function by a =
single neuron (3) \J

* Furthermore instead of 2D, we can actually come up with the
R dimensional AND function.

* The weights corresponding to the inputs are all 1 and
threshold should be R - 0.5. As a result the actual weights of

the neuron are the following:

w' =(—(R—-0.5),1,.. ,1)
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Implementation of a single logical function by a single

n
neuron (4) \J
I ro i -
—1 —1 _
+1
—1 1 1 o o
—1
+1 —1 +1 ' ‘- Ty
i 1 +1
O _ e
s
* The truth table of the e 2-DOR input space and

logical OR function. w=(-0.5,1,1). decision boundary
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Implementation of a single logical function by a .,,
single neuron (5) i
 However we cannot implement every logical function by a

linear hyper plane.

e Exclusive OR (XOR) cannot be implemented by a single neuron
(linearly not separable)

Ty o B

2 | 2 | .
R R : :
- J_E} N
—1 1 1 ' - - 1
1| -1 | 4 \Q
o o
b1l 1 | —1 —1 —1.5 9
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The learning algorithm (1)

 What happens in a complex case?
 We have a learning set only X" = {X - d = +1}>
* d:desired output X~ — {X - d = _1}
* How come we dot know?
A human expert can tell the decision

* An artificial neuron can function properly, if the two classes X* and X~ must

be linearly separable
X+ ={x: wl,x=0},
e W looking f timal t t:
e are looking for an optimal parameter set: [ _ {x c WX < o}_

opt
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The learning algorithm (2) r

 We have to develop a recursive algorithm called learning, |
which can learn step by step, based on observing the previous
weight vector, the desired output and the actual output of the

system.

* On these specific examples it is going to recursively adopt the
weight vector in order to converge w__.. This can be described
formally as follows:

w(k +1) =¥ (w(k),dK), yK)  xK) — w,,

opt*



The learning algorithm (3)

In a more ambitious way it can be called intelligent
Rosenblatt introduced perceptron learning algorithm (1958)

* Given the sets of vectors X*and X~ and an initial weight vector
w(0), this algorithm can set an optimal weights vector w,, to
the perceptron.
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1.

2.

The learning algorithm (4)

Initialization. Set w(0)=0. Then perform the following
computations for time step n=1,2,...

Activation. At time step k, activate the perceptron by

applying continuous-valued input vector x(k) and desired
d(k).

Computation of Actual response. Compute the actual
response of the perceptron:

y(k)=sgn{w" (k)x(k)}.



The learning algorithm (5) ==

4. Adaptation of the weight vector. Update the weight vector of the
perceptron according to rule:

where W(k+1)=w(k)+[d(k)=y(k)]x(k),

d (k) = 1 if x(k) belongs to class X*
- |-1 if x(k) belongs to class X'

. and
: g(k)=d(k)—y(k)

. is the error function.
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The learning algorithm (6)

5. Continuation. Increment time step n-by-one and go back to
step 2.

* Basically we feedback the error signal to adopt the weights
more efficiently.

* One can come with the following questions:
* if the algorithm converges to any fix point?
* ifthereis a fix point, what is the speed of convergence?
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The learning algorithm (7)

* The Rosenblatt learning algorithm:

Input 1
x (k)

Perceptron

sgn(.)___Y®

Output

y(k) = sgn[iwi (K)x; (k) + wo(k)j =sgn(wT (k) - x(k))

y(K)

w(k)

w(k +1) =¥ (w(k) x(k) d(k),y(k))

Desired output

x(K)

Training
algorithm

A

y(K)
W(k) - Wopt

d(k) —> (Learning with Teacher)




Perceptron learning rule —an example

LLLLL

TTTTT

uuuuuu

15t step :initial state 3"d step
2D algorithm
w; (k +1) = w, (k) + £(K)X; (K)
1=12,3
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Learn

Train

Learn

Train

Learn

Rancom

Learn

Train

8t step

It cannot separate
correctly
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