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This is the focus of this course 



• Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann); 
• Synaptic connection strenghts increase for usage, 40’s (Hebb) 
• Perceptron learning rule, 50’s (Rosenblatt); 
• ADALINE, 60’s (Widrow) 
• Critical review ,70’s (Minsky) 
• Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..) 
• Back propagation learning, 80’s (Sejnowsky,  Grossberg) 
• Hopfield net, 80’s (Hopfield, Grossberg); 
• Self organizing feature map, 70’s - 80’s (Kohonen) 
• CNN, 80’s-90’s (Roska, Chua) 
• PCA networks, 90’s (Oja) 
• Applications in IT, 90’s - 00’s  
• SVMs, statistical machines 2000-2010’s 
• Deep learning, Convolutional Neural Networks 2010- 
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History of the artificial neural networks 
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The artificial neuron (McCulloch-Pitts) 

• The artificial neuron is an information processing unit that is 
basic constructing element of an artificial neural network.  

• Extracted from the biological model 
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of 
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Axon 
terminal 

McCulloch-Pitts model 
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• Receives input through its synapsis (xi) 

• Synapsis are weighted (wi) 

• if wi > 0 :  amplified input from that source (excitatory input) 

• if wi < 0 :  attenuated input from that source (inhibitory input) 

• A b value biases the sum  
to enable asymmetric behavior 

• A weighted sum is calculated 

• Activation function shapes the  
output signal 

The artificial neuron 

xi : input vector 
wki : weight coefficient vector  of neuron k 
bk : bias value of neuron k 
ok : output value of neuron k 
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• Output equation: 

 

 

 

• Bias can be included as: 
w0=b 

x0=1 

 

 

 

 

The artificial neuron 

xi : input vector (i: 1….m) 
wki : weight coefficient vector  of neuron k 
bk : bias value of neuron k 
ok : output value of neuron k 
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Activation functions (1) 

• Activation or threshold function: ϕ(.)  

• ϕ(.): monotonic differentiable (not necessarily continiously 
differentiable) increasing function, 

• Typically sigmoidal function is used as activation function 
(bipolar) 
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Note: the original sigmoid 
function is unipolar.  
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Activation functions (2) 

• Bipolar sigmoidal type nonlinearities : 
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Activation function (3) 
• Hard nonlinearity type activation function is often used for 

simplification 
• It cannot be differentiated everywhere! 

•  In this case the output 

 

 

• where 
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Activation function (4) 
• Soft sigmoidal nonlinearity if approximated with piece-wise 

linear activation function 
• It cannot be differentiated continuously! 
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Elementary set separation by a single neuron (1) 

• Let be the ϕ(.) hard nonlinear function, hence the output is 
discrete -1 or 1 with this assumption: 

 

 

• Use the formula substituting u to wTx and then the output +1, 
if the weighted sum of the input is greater than zero or −1 if 
the argument is smaller than zero. 
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Elementary set separation by a single neuron (2) 

• Neuron with m inputs has an m dimensional input space 

• Neuron makes a linear decision for a 2 class problem  
• Two outputs 

• The decision boundary is a hyperplane  
defined: 

 

 

0T
w x
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Elementary set separation by a single neuron (3) 

• in a 2-D input space, 
the hyper plane is a 
straight line.  

 

• Above the line is 
classified: +1 (C1: yes) 

 

• Below the line is 
classified : −1 (C2: no). 
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Why it is so important to use set separation by 
hyper plane? (1) 

• Most logic functions has this complexity 
(OR, AND) 

 

• There are plenty of mathematical and 
computational task which can be derived 
to a set separation problem by a linear 
hyper plane 

 

• Application of multiple hyper plane 
provides complex decision boundary  
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• The truth table of the 
logical AND function. 

 

 

• 2-D AND input space and 
decision boundary 

 

Implementation of a single logical function by a single 

neuron (1) 



www.itk.ppke.hu 
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Implementation of a single logical function by a 

single neuron (2) 

• We need to figure out the separation surface!  

• Mathematically is the following equation: 

 

 

w0=-1.5;         w1=1;      w2=1;      
 

• The weight vector is:  
 

 w = (−1.5, 1, 1). 
 

1 2 1.5      0    x x
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Implementation of a single logical function by a 

single neuron (3) 

• Furthermore instead of 2D, we can actually come up with the 
R dimensional AND function.  

• The weights corresponding to the inputs are all 1 and 
threshold should be R − 0.5. As a result the actual weights of 
the neuron are the following: 

 

  T 0.5 ,1, ,1   KRw … 
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• The truth table of the 
logical OR function. 

 

 

• 2-D OR input space and 
decision boundary 

 

Implementation of a single logical function by a single 

neuron (4) 

w =(−0.5, 1, 1). 
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Implementation of a single logical function by a 

single neuron (5) 

• However we cannot implement every logical function by a 
linear hyper plane.  

• Exclusive OR (XOR) cannot be implemented by a single neuron 
(linearly not separable) 
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The learning algorithm (1) 

• What happens in a complex case? 

• We have a learning set only 

• d: desired output 

• How come we dot know? 

• A human expert can tell the decision 

• An artificial neuron can function properly, if the two classes X+ and X− must 
be linearly separable 

 

• We are looking for an optimal parameter set: 
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The learning algorithm (2) 

• We have to develop a recursive algorithm called learning, 
which can learn step by step, based on observing the previous 
weight vector, the desired output and the actual output of the 
system.  

• On these specific examples it is going to recursively adopt the 
weight vector in order to converge wopt. This can be described 
formally as follows: 

 

 
         opt1 , ,   k k d k y kw w w, d(k), y(k) , x(k) 
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The learning algorithm (3) 

• In a more ambitious way it can be called intelligent 

 

• Rosenblatt  introduced perceptron learning algorithm (1958) 

 

• Given the sets of vectors X+ and X− and an initial weight vector 
w(0), this algorithm can set an optimal weights vector wopt to 
the perceptron. 
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The learning algorithm (4) 

1. Initialization. Set w(0)=0. Then perform the following 
computations for time step n=1,2,… 

2. Activation. At time step k, activate the perceptron by 
applying continuous-valued input vector x(k) and desired 
d(k). 

3. Computation of Actual response. Compute the actual 
response of the perceptron: 

       sgn . Ty k k kw x
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The learning algorithm (5) 

4. Adaptation of the weight vector. Update the weight vector of the 
perceptron according to rule: 

 

•  where 

 

 

•   

•  and  

•   

•  is the error function. 
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The learning algorithm (6) 

5. Continuation. Increment time step n-by-one and go back to 
step 2. 

 

• Basically we feedback the error signal to adopt the weights 
more efficiently. 

 

• One can come with the following questions: 

• if the algorithm converges to any fix point? 

• if there is a fix point, what is the speed of convergence? 
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The learning algorithm (7) 
• The Rosenblatt learning algorithm: 
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1st step :initial state  2nd step 3rd step 

4th step:correct separation 

Perceptron learning rule – an example 
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1st step:initial state 2nd step 3rd step 4th step 

7th step 6th step 5th step 8th step 

It cannot separate  
correctly  
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