
Neural Networks

(P-ITEEA-0011)

Akos Zarandy

Lecture 1

September 10, 2018

Introduction to the course

Single layer perceptron

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 2

Copying the brain?

Human

Brain

Neuron

biological

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for

engineering implementation

Human

Brain

Neuron

biological

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for

engineering implementation

Artifical neural
network

This is the focus of this course

• Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
• Synaptic connection strenghts increase for usage, 40’s (Hebb)
• Perceptron learning rule, 50’s (Rosenblatt);
• ADALINE, 60’s (Widrow)
• Critical review ,70’s (Minsky)
• Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..)
• Back propagation learning, 80’s (Sejnowsky, Grossberg)
• Hopfield net, 80’s (Hopfield, Grossberg);
• Self organizing feature map, 70’s - 80’s (Kohonen)
• CNN, 80’s-90’s (Roska, Chua)
• PCA networks, 90’s (Oja)
• Applications in IT, 90’s - 00’s
• SVMs, statistical machines 2000-2010’s
• Deep learning, Convolutional Neural Networks 2010-

9/26/2018 3 P-ITEEA-0011 Fall 2018 Lecture 1

History of the artificial neural networks

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 4

The artificial neuron (McCulloch-Pitts)

• The artificial neuron is an information processing unit that is
basic constructing element of an artificial neural network.

• Extracted from the biological model

Soma

Myelin sheath
Schwann
cell

Nodes
of
Ranvier

Dendrite

Nucleus

Axon
terminal

McCulloch-Pitts model

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 5

• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• if wi > 0 : amplified input from that source (excitatory input)

• if wi < 0 : attenuated input from that source (inhibitory input)

• A b value biases the sum
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function shapes the
output signal

The artificial neuron

xi : input vector
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k

9/26/2018. 6

• Output equation:

• Bias can be included as:
w0=b

x0=1

The artificial neuron

xi : input vector (i: 1….m)
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k 








 



m

i

kikik bxwy
1



)(
0

xw
T

m

i

ikik xwy  







 



9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 7

Activation functions (1)

• Activation or threshold function: ϕ(.)

• ϕ(.): monotonic differentiable (not necessarily continiously
differentiable) increasing function,

• Typically sigmoidal function is used as activation function
(bipolar)

• where

1
1

2
)(




 ue
uy




xw
T

m

i

ii xwu 
0

Note: the original sigmoid
function is unipolar.

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 8

Activation functions (2)

• Bipolar sigmoidal type nonlinearities :

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 9

Activation function (3)
• Hard nonlinearity type activation function is often used for

simplification
• It cannot be differentiated everywhere!

• In this case the output

• where

 
1, if 0

sgn ,
1, else


  



u
y u

xw
T

m

i

ii xwu 
0

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 10

Activation function (4)
• Soft sigmoidal nonlinearity if approximated with piece-wise

linear activation function
• It cannot be differentiated continuously!

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 11

Elementary set separation by a single neuron (1)

• Let be the ϕ(.) hard nonlinear function, hence the output is
discrete -1 or 1 with this assumption:

• Use the formula substituting u to wTx and then the output +1,
if the weighted sum of the input is greater than zero or −1 if
the argument is smaller than zero.

   
1, if 0

sgn .
1, else

 
  



u
u u

   
1, if 0

sgn .
1, else

 
   



T

Ty u
w x

w x DECISION!

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 12

Elementary set separation by a single neuron (2)

• Neuron with m inputs has an m dimensional input space

• Neuron makes a linear decision for a 2 class problem
• Two outputs

• The decision boundary is a hyperplane
defined:

0T
w x

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 13

Elementary set separation by a single neuron (3)

• in a 2-D input space,
the hyper plane is a
straight line.

• Above the line is
classified: +1 (C1: yes)

• Below the line is
classified : −1 (C2: no).

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 14

Why it is so important to use set separation by
hyper plane? (1)

• Most logic functions has this complexity
(OR, AND)

• There are plenty of mathematical and
computational task which can be derived
to a set separation problem by a linear
hyper plane

• Application of multiple hyper plane
provides complex decision boundary

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 15

• The truth table of the
logical AND function.

• 2-D AND input space and
decision boundary

Implementation of a single logical function by a single

neuron (1)

www.itk.ppke.hu

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 16

Implementation of a single logical function by a

single neuron (2)

• We need to figure out the separation surface!

• Mathematically is the following equation:

w0=-1.5; w1=1; w2=1;

• The weight vector is:

 w = (−1.5, 1, 1).

1 2 1.5 0    x x

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 17

Implementation of a single logical function by a

single neuron (3)

• Furthermore instead of 2D, we can actually come up with the
R dimensional AND function.

• The weights corresponding to the inputs are all 1 and
threshold should be R − 0.5. As a result the actual weights of
the neuron are the following:

  T 0.5 ,1, ,1   KRw …

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 18

• The truth table of the
logical OR function.

• 2-D OR input space and
decision boundary

Implementation of a single logical function by a single

neuron (4)

w =(−0.5, 1, 1).

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 19

Implementation of a single logical function by a

single neuron (5)

• However we cannot implement every logical function by a
linear hyper plane.

• Exclusive OR (XOR) cannot be implemented by a single neuron
(linearly not separable)

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 20

The learning algorithm (1)

• What happens in a complex case?

• We have a learning set only

• d: desired output

• How come we dot know?

• A human expert can tell the decision

• An artificial neuron can function properly, if the two classes X+ and X− must
be linearly separable

• We are looking for an optimal parameter set:

 

 

 : 1

 : 1





  

  

X d

X d

x

x

 

 

T

opt

T

opt

 : 0 ,

 : 0 .





 

 

X

X

x w x

x w x

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 21

The learning algorithm (2)

• We have to develop a recursive algorithm called learning,
which can learn step by step, based on observing the previous
weight vector, the desired output and the actual output of the
system.

• On these specific examples it is going to recursively adopt the
weight vector in order to converge wopt. This can be described
formally as follows:

         opt1 , ,   k k d k y kw w w, d(k), y(k) , x(k)

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 22

The learning algorithm (3)

• In a more ambitious way it can be called intelligent

• Rosenblatt introduced perceptron learning algorithm (1958)

• Given the sets of vectors X+ and X− and an initial weight vector
w(0), this algorithm can set an optimal weights vector wopt to
the perceptron.

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 23

The learning algorithm (4)

1. Initialization. Set w(0)=0. Then perform the following
computations for time step n=1,2,…

2. Activation. At time step k, activate the perceptron by
applying continuous-valued input vector x(k) and desired
d(k).

3. Computation of Actual response. Compute the actual
response of the perceptron:

       sgn . Ty k k kw x

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 24

The learning algorithm (5)

4. Adaptation of the weight vector. Update the weight vector of the
perceptron according to rule:

• where

•

• and

•

• is the error function.

         1 ,     k k d k y k kw w x

 
 

 

1 f belongs to class X
,

1 if belongs to class X






 



i k
d k

k

x

x

      k d k y k

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 25

The learning algorithm (6)

5. Continuation. Increment time step n-by-one and go back to
step 2.

• Basically we feedback the error signal to adopt the weights
more efficiently.

• One can come with the following questions:

• if the algorithm converges to any fix point?

• if there is a fix point, what is the speed of convergence?

9/26/2018. P-ITEEA-0011 Fall 2018 Lecture 1 26

The learning algorithm (7)
• The Rosenblatt learning algorithm:

 Perceptron

Training

algorithm

x(k)

Input Output

Σ
...

w0(k)

w1(k)

w2(k)

wN(k)

x2(k)

xN(k)

x1(k)

1

sgn(.)

 (k))k(sgn)k(w)k(x)k(wsgn)k(y T

0

N

1i

ii xw 







 



y(k) y(k)

y(k)x(k)

d(k)

w(k)

Desired output

          k,k,k,k1k ydxww 

(Learning with Teacher)

w(k) wopt

Perceptron

Training

algorithm

x(k)

Input Output

Σ
...

w0(k)

w1(k)

w2(k)

wN(k)

x2(k)

xN(k)

x1(k)

1

sgn(.)

 (k))k(sgn)k(w)k(x)k(wsgn)k(y T

0

N

1i

ii xw 







 



y(k) y(k)

y(k)x(k)

d(k)

w(k)

Desired output

          k,k,k,k1k ydxww 

(Learning with Teacher)

w(k) wopt

1st step :initial state 2nd step 3rd step

4th step:correct separation

Perceptron learning rule – an example

3,2,1

)()()()1(





i

kxkkwkw iii 
2D algorithm

9/26/2018 27 P-ITEEA-0011 Fall 2018 Lecture 1

1st step:initial state 2nd step 3rd step 4th step

7th step 6th step 5th step 8th step

It cannot separate
correctly

9/26/2018 28 P-ITEEA-0011 Fall 2018 Lecture 1

